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Abstract

We introduce a nonlinear dispersive quintic equation. Its travelling waves are governed by a linear equation. We construct
a large variety of explicit compact solitary waves. Some of these compactons are very robust, others decompose very
quickly. Numerical simulations also revea the existence of compact travelling breathers. © 1999 Published by Elsevier

Science B.V.

1. Introduction

Inthiswork we extend our studiesof the nonlinearly
dispersivepartial differential equation K (m, n) [1-4],

K(m,n);

ut+(um)x+(un)xxx:07 n>17 (1)

to consider higher order dispersive effects. Among
the novel feature of Eq. (1), we mention the non-
analyticity of some of its more interesting solutions,
or the compactness of solitary waves. For n = m these
solitary waves, the so-called compactons, take a par-
ticularly ssmple form,

2n\ n—1 2/ (n=1)
= — At
u {n+1cos{ an (x )H

2nar
n—1"

for |x — At] <

(2)
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and u vanishes elsewhere. The emergence of such
structures is best seen via an explicit analysis of trav-
eling waves [1,4]. It was demonstrated numerically
that even though in general, for n > 1, Eq. (1) is not
integrable, nevertheless the interaction between their
compact structures is very robust, leaving very little
debris behind and the interacting compactons persist
for hundreds of interactions [ 1]. Integrable equations
admitting compactons are discussed in Refs. [2,5]. In
this paper we focus our attention on fifth order nonlin-
ear dispersion and present a family of explicit, single
and multi-hump, compact solitary solutions. Though

up+ (u")x + (") 3 + 8(u™)sc = 0 (3)

can be considered as a natural quintic extension of
Eq. (1), our starting point is

w4+ (" [u(u") o1 =0. (4)

Eq. (4), whichissimilar to Eq. (1), also admits com-
pact structures which are very similar to those of (1).
Its quintic extension will be seen to be amenable to
analysis,
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o(l,m,n);
e+ a(u™™) 4+ o[u(u") ol + Slu(u') a1, =0.
(5)

Unless otherwise stated we shall assumethat a = w =
1. To find traveling waves with a constant speed we
define s = x — At and integrate once to obtain

— A " uu) o+ Su(ul) a
= Co(= const.) (6)

Disregarding the integration constant we cast Eq. (6)
into the obvious product ul [u(s)]. In particular, if
n =m = [, we obtain a linear equation in L[V (s)]
where V =, and

LIV(s)] =—A+V+ Vi, + 8V =0. €

We thus obtain an unusual, yet very useful, situation
wherein the equation governing traveling wavesislin-
ear. Superposition of solutions enables to generate a
wide variety of patterns. Though these patterns may,
or may not, be evolutionary, nevertheless, the linear-
ity of the fourth order differential equation like (7) is
an essential feature. In fact, amost any nonlinear el-
ement, when added, makes this equation unsolvable.
Note that not much is lost when the integration con-
stant Cp is disregarded. Indeed, if u vanishes at the
front and / = 1, the dominant part uus, = Co cannot
be balanced unless Cy = 0. For [ = 2, however, such
a balance is possible yielding u ~ s%° near u = 0.
These solutions are thus lost when Cy is disregarded.

The present studies of the quintic equation are mo-
tivated in part by our quest to understand how far the
concept of compact structures can be extended, but
primarily by our quest to find a quintic model which,
even if only of a pedagogical value, would explain the
richness of the structures generated by the variety of
the quintic models. In this respect one should keep in
mind that for almost two decades quintic models have
resisted almost all analytical attempts, and eventhe el-
ementary quest to find a simple solitary wave cannot
be answered in general, see Ref. [6,7], and references
therein. Most of our present knowledge about the pat-
terns generated by quintic, dispersive partial differen-
tial equations, originates from numerical experiments.
In contradistinction, the linearity of Eq. (7) provides
a plethora of explicit travelling solutions. It is also of

interest to note that patterns generated by the K (2, 2)
equation and Eq. (4) are amost identical. Therefore,
these two nonlinear forms of dispersion are amost
interchangeable. Similarly, in spite of the differences
between the quintic dispersion termsin Egs. (5) and
(3), the emerging patterns are quite similar. Finally,
we call the attention to the appendix where we present
a number of partial differential equations which also
admit a linear subclass of travelling solutions.

2. Travelling waves

The nature of the travelling solutions obtained via
Eq. (7) isdetermined by the roots of the bi-quadratic
equation §r* +r2 + 1 =0. Let
Ay = [1+v1-481/25,

r’=—As,

and consider first purely imaginary roots. We have
Case 1.

0<8<1/d=r=4i/A;.

In this case

V=A4wv1c0S[\/A_(s+ s1)]
+ v2C08[\/A (s + s2)], (8)

with constants v; and s;, i = 1, 2. The basic compacton
solution is obtained upon setting either of the integra-
tion constants to zero. We abtain

u =V =2x1cos[\/A1s/2]
for |s| < 7/\/A+, (9)

and zero elsewhere. Since 4, > 4_, we have a nar-
row, 4, compacton, which later will be shown to be
unstable, and 4_, a wide compacton, which later will
be shown to be stable. Since Eq. (7) islinear and each
of the solutions is invariant under shifts in s, a two
parameter family of solutions may be constructed. To
generate compactons, V has to vanish on the front at
least as s2, which implies that this point must be alo-
cal extremum of the solution. To see how such a con-
struction is done, consider, for instance, the periodic-
ity ratio, p, being equal two, i.e.,, p := /4, /4_ =2,
which happens for 4_ = 5/4 (and thus 6 = 0.16).
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Fig. 1. An example of 2-periodic functions with three different
2-hump compactons that one can construct by properly shifting
the elevation of V (note aso a shift in Z to ensure that the double
period coincides with the 0-27 interval).

Now let the homogeneous part of the solution be (see
Fig. 1)

The choice of the shift (1/2) is arbitrary and o is
the fact that both periods have an equal weight in the
solution. These are 2 degrees of freedom to choose
from. In Fig. 1 we display three different possibilities
to construct a 2-hump compacton. If for agiven choice
we get V, = W a the edge, then V = A[1— V,,/ W]
vanishes smoothly at the edge of the domain.

Let us examine in more detail one particular class
of solutions. Let the periodicity ratiop = /4, /4_ be
an integer and the two waves in phase. Note that any
periodicity ratio is possible with the corresponding 6
given as

2
— p
=[] 0

Vi = —cos(z +1/2) — cos(2z),

Let z = s,/4_ and consider a class of compact solu-
tions,

V=A[1+ (14 (—1)?b) cosz + bcospz]
for z| <7, (11)

and zero elsewhere. The constant b is afree parameter.
We thus have a one-parameter family of solutions.
Asthefirst use of the free parameter we seek com-
pact solutionswith two smooth derivativesat the edge.
The smoothness of the third derivative follows auto-
matically. For p = 2 thisyields b = 1/3 (for p = 3;
b=-1/8, etc.) and the resulting solution reads

A
V= . 1[p2 — 1+ p?cosz + (—1)? cospz]

for |z| < 7, (12)

and zero elsawhere. We shall refer to these solutions
which have an extended smoothness at the edges as
P-compactons. Their shape is markedly different for
odd and even p’s. For odd p’s, the first three deriva-
tives vanish at z = 0 as well, flattening the resulting
pulse. For even p’s the interaction between the two
basic modes increases the amplitude but localizes the
resulting compacton. Thesefactsare evident when p =
2 and p = 3 cases are recorded explicitly,

p=2; V=238xcost(z/2)
for |z = sv5/2| < mand 6=0.16, (13)
p=3; V=2A[2—-cos(z)]cost(z/2)

for |z = sv/10/3| <7 and &=0.09. (14)

Let usfollow the changesin the pattern ( say, the num-
ber of humps) as b is varied. If

V' (z) = (14 (=1)?)bsinz + pbsinpz # 0

for|z| <7,

only a simple, one hump, compacton is possible. For
p = 2, this condition imposes —1/5 < b < 1/3.
At the upper end of the domain, » = 1/3 and the 2-
compacton solution (13) emerges. At the lower end,
b= —1/5, we have a new compacton solution,

V= 8—;[1—sn“<z/2>]

for |z = vbs/2| < 7, (15)

with aflat top; V/ =V’ =V =0at z =0.

When b is moved out of the [—1/5,1/3] domain,
the solution develops two humps. When 1/3 < b the
extra smoothness at the edge is resolved into a nega-
tivewell that emerges near the edge. Similarly, when b
crossesthelower end of the domain, the extra smooth-
ness at the center of the pulse resolves into an addi-
tional hump. The resulting solutions are always non-
negative. These patterns are best seen taking two rep-
resentative values of b,

Forb=1,
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V =4\ cos(z) cos*(z/2)

for |z| < 7,
Forb=-1/2,
V =A[3—2cos(z)] cos’(z/2)

for |z| < 7,

and zero elsewhere. These solutions were writtenin a
way that shows how the basic compacton solution is
modulated by the presence of the unstable 4, compo-
nent of the solution.

Consider now p = 3 (z = sv/10/3, 6 = 0.09). One

hump compactonsresidein —1/8 < b < 1/4. At b =
—1/8, a P = 3-compacton, given via (14), emerges.
For b < —1/8the solution devel opsthree new humps;
a negative hump near each edge and a positive hump
near the center. At the upper limit, » = 1/4, we obtain
anew compacton solution,
V=A[1+cos(z)] for|z| <. (16)
As b = 1/4 is crossed the inflection point at |z] =
/2 splits into two humps. The resulting multihump
structure may be easily seen taking b = 1/2 (and any
odd p),

V=Xx{1+ i[cos(pz) +cos(z)]}
z=+/As, (17)

and zero elsewhere. In Section 3, we test the evolu-
tionarity of these patternsfor p = 3 and 5. When used
as an initial data, instead of propagating in a constant
speed, as expected from a travelling-wave, these so-
[utions transform into stable breathers that propagate
with a constant speed. In passing we also note the sta-
tionary compact solution

V(x) = Vycos® (ﬂ) x)

for |z]| < 7,

3
for |x| < 3w/2V/10, (18)

and zero elsawhere.

When p is a, non-integer, rational number m/n, one
may form P-compactons but their width will be now
n times the width of the elementary, 4_, compacton.
We obtain

-10 -5 0 5 10 15 20

Fig. 2. An example of a a solution that for |z| < 27 supports a
2-humps, P-Compacton, with p = 3/2. Note that a conventional,
2-hump, compacton is aso possible if 0 < z < 47

1 Cosz
V=1 —m®
{ R [ " cos(nr)
,C0S(mz/n)
— for |z| < nw, (19)
Ccos(mir)

and zero elsewhere, see Fig. 2 for p = 3/2. Unlike the
integer p case, wherein al P-compactons have only
one hump, for p = 3/2 we have two humps. The
figure aso reveals a second, conventional, compacton
with two humps and quite a flat bottom if V — V +
9/5 and 0 < z < 4. In addition two, single hump,
compactons are possible as well.

Case 2. For 6 > 1/4 we obtain complex 4's. The
resulting solution is then cast into

V(s) = A+ Vpcosh(u,s) cos(pu—s) , (20)
or
V(s) = A+ Vosinh(pys) SN(p—s) ,

where Vp isaconstant and u = [ /2 £ 1/25] /26Y4.

As before, for compact structures we request V(s)
to be smooth at the edge of the domain. Thusfor (20)
the two points at the edge have to be chosen from the
nontrivial solutions of

Ktanh(Kz) =tan(z) ,

46+ 1
KEZ—+=\/—4571, (21)

and z = u_s. Eq. (21) has a countable number of
solutions and each root enables a construction of a
different compact solitary wave. Thus if s; denotes
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Fig. 3. A 2-humps travelling compacton for 6 = 5/16. The differ-
ence of scales, see the insert, causes this structure to look com-
pletely flat.

a solution of (21), then the corresponding compact
solution is

_ B cosh(p.s) €cos(u—s)
V=4 {1 cosh( i) COS(p—s;) }
for |s| < s, (22)

and vanishes elsewhere. Due to the very fast growth
of the exponential factor it is nearly impossible to vi-
sualize the internal structure of these compactons. As
can be seen from the example shown in Fig. 3 where
K = 3 (6 = 5/16), there is an enormous dispar-
ity of scales between the inner (see the insert) and
the outer structure. For all practical purposes, this 2-
humps compacton looks like a compacton with a flat
plateau.
Case 3; § < 0. The solution may be written as

v = A+ vicosh(4,s) + vpcos(4;s) , (23)
or

v = A+ vicosh(4,s) +vp8in(4;s) , (24)
where

2|8|42 =1+ R, 28/42=-1+R,

R=\/1+ 4.

The first solution (23) generates symmetric compact
structures. The second, Eq. (24), enables to construct
a variety of asymmetric compact structures like the
one shown in Fig. 4.

Case4; 0 < 6 < 1/4, but w < 0. In this case all
rootsof theindicial equation arereal, and notravelling
compact solution seems possible.

1.0

0.0

-6.0 -2.0 20 6.0 10.0
z

Fig. 4. Example of a compacton for § < 0.

3. Elements of numerical studies

The goal of this section is to sketch the basic time
dependent features of our problem studied on a peri-
odic domain, and to test the evolutionary aspects of
the various solutions presented in the previous sec-
tion. We describe a set of numerical experiments fo-
cusing our attention onthe ! = m = n = 1 case and the
0 < 6 < 1/4 domain. A more detailed analysis and
extensive numerical experiments are in progress.

3.1. Numerical issues

Though the K (m, n), the first equation describing
the propagation of compactons was introduced over
half a decade ago, due to the strong nonlinearity and
the non-analyticity of the solutions, the numerical is-
sues concerning the numerical integration of this and
other compacton-supporting equationsare still consid-
ered to be far from being adequately understood.

At the present stage a full analysis of the conver-
gence of the numerical scheme is a challenging task.
We have only a partial understanding of the numer-
ical methods used to study our problem. Practically,
the only meaningful criterion to check the numerical
convergence of our scheme is to monitor the behav-
ior of the resulting solution as one refines the grid.
The results obtained in all our simulations were found
to be independent of the grid size. However, one till
has to distinguish between genuine phenomena and
those which are due to the numerics. This is of ma-
jor importance, in particular due to the appearance of
second-order interactions and oscillatory tails, which
at this point cannot unambiguously be declared as a



302 P. Rosenau, D. Levy/Physics Letters A 252 (1999) 297-306

140

T
1201 --- T
I

100}
|
h
8o 1
1
601
40 "

'
i
1
20+ 1
1

L . s L L L '
-20 -15 -10 -5 [ 5 10 15 20

Fig. 5. A single compacton. Right: wide (A4_) stable. Left: narrow
(44+) unstable. 5 = 0.09.

true effect or merely a numerical artifact.

The examples to be presented next are intended to
display a flavor of the richness of the structures gen-
erated by our model. We find both stable and unstable
structures. The unstable structures, typically associ-
ated with initial data that has both negative and posi-
tive parts, either transform into stable ones or develop
oscillations that ultimately blowup in time.

3.2. Numerical ssimulations

In the following simulations we have used a
pseudo-spectral method in space and explicit fourth-
order Runge-Kutta method in time. Typically, we
used 128 or 256 modes in the Fourier transform. The
time step, At, was of the order of (4x)®, (4x being
the spatial grid size). In order to avoid the aliasing as
well as to discard the numerical oscillations created
by the nonsmooth front of the compacton, the solu-
tions were filtered using a smooth exponentid filter in
the Fourier space, i.e., e “U/N)" Here, N is the total
number of modes, j abbreviates the mode number,
a = 34, so that e* ~ 10718 (the roundoff error), and
p dependson N. For N =128 we used p = 8.

In Fig. 5 we test the evolutionarity of the basic
single compacton (9). In the right part we follow the
wider compacton, (4_), while on the left the initial
data corresponds to its narrow sibling, (4,). In both
cases, A = 50. It isevident that the wider compactonis
stable and propagates to the right, while the narrower
one is unstable and radiates its energy.

140

. T=0.25|
120
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40

201

160

140
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OO«
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1
1
i
120 : !
!
i
!

Fig. 7. 6 = 0.09. Gaussian initial data. It dissolves into cos?-shaped
compactons

In Fig. 6 we display the evolution and interaction of
two stable compactons. They both emerge intact af-
ter the interaction, preserving their initial shape. Note
the typical phase shift associated with solitonic inter-
actions.

Fig. 7 demonstrates the emergence of stable com-
pactons out of a more general initial data, which in
this caseistaken asu(0) = 100e~°%% and 6 = 0.09.
The emerging compactons are stable, and preserve
their initial shape in subsequent interactions. One can
easily verify that these compactons correspond to the
wide branch of the cos? solution, (9). A similar be-
havior was numerically observed for the same initial
data and negative §’s.



P. Rosenau, D. Levy/Physics Letters A 252 (1999) 297-306 303

---  T=02
140 | =~ T=05 N

Fig. 8. 8 = 0.16. A relatively wide cos*-shaped initial data begets a
tall cos*-compacton followed by a much smaller cos?-compacton.

3.2.1. P-compactons

The 2-compacton, (see (13)), was seen to be sta-
ble in our numerical simulations and has ameaningful
domain of attraction. This is shown in Fig. 8 where
we follow the evolution of the initial pulse u(0) =
100cos*(1/0.1x), with 6 = 0.16. The initial pulse
has a wider support than the basic 2-compacton and
thus decomposesinto separate compactons. The lead-
ing, taller, compacton is a 2-compacton and has the
cos*-shape, (13). The smaller compacton has the cos?
shape, (9). In this example we thus observe two sta-
ble canonical compactons emerge from a given ini-
tial datum. Actually the domain of attraction of the 2-
compactons is much wider than can be inferred from
the presented example. For instance, the compacton
solutions corresponding to » = —1/5 (see (15)) and
b = —1/2 decompose. The emerging pattern is quite
similar to the pattern described in Fig. 8, and the lead-
ing pulseis, again, the 2-compacton!

We note that other single hump P-compactons also
appear to be stable. For instance, the 4-compacton was
observed to emerge from an initial datum having a
similar shape but a wider support.

We now turn to more evolved patterns. First, con-
sider Fig. 9 which displays the emergence of a 2-
humps compact breather. Here the 3-humps travel-
ling wave given in (17) for 6§ = 0.09, was used as
an initial datum. Clearly, this pattern rather than to
propagate with a constant speed, decomposesinto two
parts — the left part is the narrow, unstable compacton,
while the emerging right part is a 2-humps compact

78 15.6 23.4 31.2 39

200 T

180

160

1401

1201

- L

100~
80

60

\
T
0

720‘ L L L L L L L n L
(b) -5 0 5 10 15 20 25 30 35 40 45 50

Fig. 9. (a) 6 =0.09. A 3-humps travelling compacton, see (17),
isused as an input. Though it is an exact solution, instead of shape
preserving propagation it transforms into an unstable compacton,
seen on the left, and a 2-humps breather. (b) A separate snap-shot
of the breather in later times.

breather. The breather appears to be a stable structure
that moves to the right with a constant speed and, as
can be clearly seen, apart of having compact support,
it has the typical features of a conventional breather.
In Fig. 9awe show the temporal evolution of the solu-
tion for ¢+ € [0, 0.093]. The time difference between
every two frames equals Ar = 1.865x 10~3. InFig. 9b
we zoom into the breather and show its portrait at a
different times. The time corresponding to the left-
most figure is + = 0.0466, and the time difference
between every two neighboring figures is fixed to be
At = 1.865 x 103, For clarity the different shapesthe
breather assumes, are displayed along the x-axis.

In Fig. 10, we display a more complicated breather
that emerges from a 5-humps purely travelling com-
pacton generated by (17), with p = 5 and § =
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. . L L ' ' L
(b) 0 5 10 15 20 25 30 35 40

Fig. 10. A 4-humps breather evolving out of a 5-humps initial
data, p =5in (17) (8= (5/26)2). (a) Temporal evolution. (b)
A separate snap-shot of the 4-humps breather in different times.

(5/26)2, used as an initial data. Asin the cubic case,
this structure does not seem to be evolutionary. Its
main part transforms into a stable 4-humps breather
that propagates with a constant velocity. The time
spacing between the different snap-shots is the same
asin Fig. 9. The left plot in Fig. 10b describes the
solution at ¢+ = 0.0746. The numerics was not suffi-
ciently detailed to identify unambiguously the nature
of the emerging shape on the left side of part (a) of
the picture.

Inthelast displayed examplewe use the sameinitial
domain, the same § = (5/26)2, and the same homo-
geneous solutions but we reduce their relative compo-
nents,

uo(x) = 100[ 1+ 2(cos(xV'26) + cos(xv'26/5))1,
(25)

I 1
9.38 10.94 12.50 14.06 15.63 17.19 18.75 2031 2188

Fig. 11. Severa breathers evolving out of a 5-humps initial data
(25) (6= (5/26)2). (a) Tempora evolution. (b) Zooming into
the left side. At least one 3-humps bresather emerges from the tail
of the leading 4-humps compacton.

and zero elsewhere. As in the previous example, a 4-
humps breather emerges on the right side of the pat-
tern, but thistimeit leaves behind at least one 3-humps
small breather, see Fig. 11. Possibly, a third multi-
humps structure emerges, but the numerical resolution
is not sufficient to make a definite statement. Fig. 11a
corresponds to time ¢ € [0,0.149]. In Fig. 11b we
follow the evolution of the small, 3-humps breather
for + € [0.056,0.149]. Note that in both breathers
the humps decrease in time, and the 4-hump breather
appears to transform into a single hump compacton.
Here, as well, it is unclear whether that is a genuine
phenomena or an artifact induced by the numerical
methods in hand.
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4, Comments and interim conclusions

(1) We have carried a large number of numeri-
cal simulations, of which a small sample was shown
in the last section. These experiments seem to indi-
cate that only one hump compactons propagate as a
purely travelling wave. We find multi-humps struc-
tures that propagate with a constant speed, but these
are breathers. Apart of the compact support their other
features are quite similar to those observed in conven-
tional breathers. However, one should keep in mind
that, given the enormous variety of possible travel-
ling structures, some of the presented conclusionsmay
have a limited validity. Among the many interesting
topics left for further exploration we mention the need
to understand what causes the formation of a breather.

(2) In arecent work [8], Dey seeks for solutions
of the form A cos”(Bs) for Eq. (3). Such solutions
were found for o = 4/(m — 1) and a specific value
of 8. This solution is an exact counterpart of our 2-
compacton (13) found for § = 0.16. Clearly, other P-
compactons are unavailable via such an Ansatz. Dey
also considers another nonlinearly dispersive quintic
equation, derivablefrom aLagrange principle, cf. Ref.
[3], and, again, finds the same compacton solution for
a specific numerical value of the quintic coefficient.
A similar conclusion emerges from arecent work [9]
where, in addition, the stability and evolutionarity of
these compactonsis numerically tested. Like their cu-
bic siblings, these compactons are very robust.

(3) Perhaps the simplest way to see the origin for
the richness of patterns generated by the quintic equa-
tion, as compared with the relative simplicity of the
patterns in the cubic case, is to compare the dynam-
ics of one oscillator with the large variety of modes
generated by two coupled oscillators.

(4) The comparison with other efforts to under-
stand quintic dispersive effects whether linear or not,
makes the advantage of our model equation plainly
clear; it is about the only model which enables an an-
alytical glimpse into the interaction of waves. In par-
ticular, it helps us to understand how quintic disper-
sion generates a plethora of patterns not observed in
the cubic case. While the particular form used in this
work was not yet derived from any concrete problem,
there is ample evidence to suggest that other quadratic
dispersions, say the ones used in Ref. [9], produce
very similar patterns. We believe that the understand-

ing gained via the present problem will be useful in
more concrete issues.

Appendix A
(1) The smplification used for Eg. (5) is also
available for the fully nonlinear Boussinesqg equations

[2,10],

Ut = Uxx — (um+l)xx - 6[u(um)2x]xx >

m=1,2, (A1)
or
uy = (U)o + S[u(t®) x ] - (A2)

A dissipative counterpart of our problem is given via

u+ (%) + (uity)  + 8(uuzy), =0. (A3)

Eq. (A.2) describesvibrationsof a purely anharmonic
lattice with a quartic potential, and in addition to a
compact travelling waves it also admits a stationary
compact breather [2]. Eqg. (A.3) can be viewed ei-
ther as a nonlinear variant of the KS equation or
as the Hale-Shaw problem appended with a convec-
tion [11].

(2) We note that the amplitude-independent width
of the trigonometric compactonsis a result of detailed
bal ance between convection and the dispersion, man-
ifested in Egs. (1), (5) and (A.1) viathe same de-
gree of homogeneity of the nonlinear mechanisms. If
additional temporal derivatives are involved, this bal-
anceis lost and the resulting compactons always have
avarying width. For instance, both for

Uy = e + (W) o A+ L") ) s (A.4)

and

w4+ (W™ e+ blu(u") ]
+ 8[u(u') el =0, (A5)

the presence of temporal derivatives has a dramatic
impact on the resulting patterns. In both cases, if one
fixes 8, changes in the speed of the wave generate a
whole manifold of compact structures.
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